A stochastic multicellular model identifies biological watermarks from disorders in self-organized patterns of phyllotaxis
نویسندگان
چکیده
Exploration of developmental mechanisms classically relies on analysis of pattern regularities. Whether disorders induced by biological noise may carry information on building principles of developmental systems is an important debated question. Here, we addressed theoretically this question using phyllotaxis, the geometric arrangement of plant aerial organs, as a model system. Phyllotaxis arises from reiterative organogenesis driven by lateral inhibitions at the shoot apex. Motivated by recurrent observations of disorders in phyllotaxis patterns, we revisited in depth the classical deterministic view of phyllotaxis. We developed a stochastic model of primordia initiation at the shoot apex, integrating locality and stochasticity in the patterning system. This stochastic model recapitulates phyllotactic patterns, both regular and irregular, and makes quantitative predictions on the nature of disorders arising from noise. We further show that disorders in phyllotaxis instruct us on the parameters governing phyllotaxis dynamics, thus that disorders can reveal biological watermarks of developmental systems.
منابع مشابه
Noise and Robustness in Phyllotaxis
A striking feature of vascular plants is the regular arrangement of lateral organs on the stem, known as phyllotaxis. The most common phyllotactic patterns can be described using spirals, numbers from the Fibonacci sequence and the golden angle. This rich mathematical structure, along with the experimental reproduction of phyllotactic spirals in physical systems, has led to a view of phyllotaxi...
متن کاملAnnealing a magnetic cactus into phyllotaxis.
The appearance of mathematical regularities in the disposition of leaves on a stem, scales on a pine-cone, and spines on a cactus has puzzled scholars for millennia; similar so-called phyllotactic patterns are seen in self-organized growth, polypeptides, convection, magnetic flux lattices and ion beams. Levitov showed that a cylindrical lattice of repulsive particles can reproduce phyllotaxis u...
متن کاملAnalyzing perturbations in phyllotaxis of Arabidopsis thaliana
Vascular plants produce new organs at the tip of the stem in a very organized fashion. This patterning process occurs in small groups of stem cells, the so-called shoot apical meristems (SAM), and generates regular patterns called phyllotaxis. The phyllotaxis of the model plant Arabidopsis thaliana follows a Fibonacci spiral, the most frequent phyllotactic pattern found in nature. In this phyll...
متن کاملOn Pattern and Evolution
A theoretical model of biological patterning consisting of two determined regions interspersed by a smaller third region is presented. This patterning is not dependent on long range diffusion, but only on short range or near neighbor diffusion. The interaction of two signaling pathways is discussed as a general basis of such tripartite biological patterning. Plant patterns (phyllotaxis) illustr...
متن کاملComputational Modelling of Nonlinear Calcium Waves
The calcium transport in biological systems is modelled as a reaction-diffusion process. Nonlinear calcium waves are then simulated using a stochastic cellular automaton whose rules are derived from the corresponding coupled partial differential equations. Numerical simulations show self-organized criticality in the complex calcium waves and patterns. Both the stochastic cellular automaton appr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2016